
Journal of Statistical Physics, VoL 80, Nos. 1/2, 1995 

The Turning of Magnetotactic Bacteria 
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A magnetotactic bacterium aligns itself along the magnetic field. When the field 
is reversed the bacterium makes a U-turn in the surrounding water. The turning 
is described by a Fokker-Planck equation for the angle 9, which is singular at 
the endpoints 0 = 0 and ,9 = n. The time needed for turning can be found exactly 
as a first-passage time. The probability distribution itself can be found in terms 
of an approximation for low temperature. To cover the regions near the 
endpoints singular perturbation theory is needed. 

KEY WORDS: Bacteria; singular Fokker-Planck equation. 

1. THE EXPERIMENTAL S ITUATION 

F o r  our  purpose  a bac te r ium is a body  immersed in water  propel led  by a 
flagellum at its tail end. A magneto tac t ic  bac ter ium contains  a magnet ,  
consist ing of  crystals of  F e 3 0  4 or  Fe3S4, inside the body  and in line with 
the tail. An external  magnet ic  field will turn the bac te r ium paral lel  to the 
field, so that  the flagellum has the effect of  propel l ing the bac ter ium along 
the field line. I1~ Experiments  were done in which the magnet ic  field was 
suddenly reversed, so that  the bacter ia  had  to turn around.  The time it 
t ook  to complete  the turn was measured,  because it provides information 
abou t  the strength of  the magnet  and  the friction with the fluidJ 2' 3) 

Take  the z-axis in the direct ion of  the original  field and let ~9, ~k be the 
direct ion of  the magnet.  At  t = 0 the field B is reversed into the direct ion 
- z ,  and then exerts a torque m B  sin ~9, where m is the magnet ic  dipole 
moment .  The torque acts to increase 9; the turning is ove rdamped  due to 
the friction with the water,  so that  

m B  
0 = 8n--~-~ sin ~9 (1) 
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Here t/is the viscosity of the water and R is the radius of the bacterium in 
case it is spherical, and otherwise some phenomenological effective radius. 
This is the macroscopic equation, i.e., the equation of motion ignoring 
fluctuations. It yields for the time needed to rotate from 0t to `92 

t2 - -  tt = (8nqR3/mB)(log tan �89 -- log t a n  1,91 ) (2) 

To obtain the total turning time we ought to take ,91 = 0 ("north 
pole") and ,92 = ~ ("south pole"), but both give infinity. The reason for the 
infinity at the north pole is that it is an equilibrium point, albeit unstable, 
at which the torque vanishes. The reason for that at the south pole is that 
it is a stable equilibrium, toward which the angle ,9 creeps infinitely slowly. 
In the experiments therefore the turning time between ,91 = 6  and ,92 = n - 6  
was measured, where 6 was taken equal to 10 ~ 

In this work the thermal fluctuations, linked to the dissipation in (1), 
are included by means of a Fokker-Planck equation. The solution for low 
temperature can be obtained without infinities, but near each of the poles 
a special treatment is required. The contributions of these polar caps to the 
total turning time is not negligible. That was the reason why in the 
experiments the caps were excluded. 

2. THE F O K K E R - P L A N C K  E Q U A T I O N  

In the absence of a field the direction ,9, ~k of the magnet performs a 
Brownian motion on the unit sphere. The probability density p(,9, ~k, t) on 
the surface of the sphere obeys the diffusion equation 

1 o . O .  1 
= o  si--  sxn `9 + `9 j 

The diffusion constant D will be determined presently. In our case p does 
not depend on ~, and it is enough to know the probability density, P(O, t) 
of ,9 alone. The area of a zone on the unit sphere is proportional to sin ,9, 
so that P(,9, t) = 2r~p(,9, t) sin ,9 and 

Ot  = D sin `9 sin `9 

Here 0 < 0 < re, and at the boundaries P = O. 
When the field is added an additional term appears, which must have 

the form of a drift: 

OP D 0 . 0 P 0 F(`9)P (3) 
~ - =  ~ s m , g g ` 9 s i n S  OS 
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We know that the equation is satisfied by the equilibrium distribution 

mB cos ~9] 
Peq(6t) = C sin 9 exp k T  J 

and we find 

D mB F09)= ~-~ sin 8 

25  

F69) - 

This yields the Einstein relation 

D = -  

T h u s  the coefficients of (3) are 
B,m,  rl, R, kT. 

mB 
8~rlR3 sin ,9 

k T  

8r~rlR 3 

entirely expressed in the constants 

It is convenient to divide the right-hand side of (3) by mB/8rrrIR 3 and 
absorb this factor into t. The rescaled diffusion constant is 

D8rrr/R3 k T 
= ~-.8 

mB mB 

e is the ratio of the fluctuation energy k T  to the potential energy mB. Our 
approximations will be based on small e. In the experiments it was about 
1/16. c2) The Fokker-Planck equation (3) now takes the form 

OP 
a-~ sin 8 a 1 p ~ - = e  a-~ si--~ -a-~ sin ~9 P 

ozP 0 
(e cot 0 + sin oq)P (4) 

= e 382 0 3  

3. THE MEAN FIRST-PASSAGE T IME 

Take 0 < O <ft. Let r(OI,9) be the average time for a point starting 
out at some O between 0 and O to reach O for the first time. This mean 
first-passage time obeys ~4) 

d2r - sin ~9) d~ = e ~ff~_ + (e cot ~ +  -1  

On the other hand, if the diffusion term in (3) is neglected, i.e., in the 
limit T ~  0, the equation must reduce to the Liouville equation that goes 
with (1), hence 
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One obvious boundary condition is 3(O10) = 0. The solution is elementary, 

I ~ {Ae c~ 1} 
dO' 

r (Ol0 ) - -  (0..<O) 
sin 0' 

The remaining integration constant A is determined by the requirement 
that r(OI0) should be finite, and one finds 

~ dO' 
r ( O I 0 ) =  { 1 - e  -~l . . . .  o'v,} s i n 0 ' .  (5) 

Another way of justifying this choice of A is by imagining a boundary at 
0 = v/with the reflecting boundary condition dr/dO = 0, and then taking the 
limit v/~ 0. 

The divergence of the macroscopic equation (2) at 0 = 0 has now been 
overcome thanks to the fluctuations. Starting from 0 = 0, the mean time to 
reach a prescribed value O is 

: { 1  e -ct . . . .  ,~/~} dO 
v(O[O)= - sinO (6) 

This is to be compared to (2), which involves the cutoff J: 

r(O IJ) = log  tan ~ O - l o g  tan ~ fi = s in0 (7) 

The difference between (6) and (7) is 

Ii ~ dO _ [ o  e -(l-c~ S)l~ dO 
{ 1 - e  -~l . . . .  ova} sinO J~ sin---~ (8) 

Let J run from 0 to O. The first integral increases monotonically from 0 to 
the value (6). The second integral decreases monotonically from + oo to 0. 
Hence there is one Jo at which (8) vanishes. Note that Jo cannot be small, 
because the first integral is small only for J'- ~ 2e, while the second is small 
for 1 -  cos 6 >> e. Yet J0 cannot be empoyed as a cut-off, as it cannot be 
found without the use of the exact result (6). Moreover it depends on O, 
because the second integral in (8) increases with O. A cutoff J can be used 
if the experimental observations also are done between the angles 6 and 
O - 6 .  

4. THREE C O M M E N T S  

One comment is that the mean first-passage time is not identical with 
the actual turning time. The reply is that once O has left the neighborhood 
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of the unstable equilibrium point  it moves  with negligible fluctuations 
according to the macroscopic  equat ion (1), so that  both  times are the 
same. If  the fluctuations are too large for this identification, the concept of  
turning point  itself is not  well defined. 

A second comment  is that  the bacter ium does not  start  at ,9 = 0, but 
is initially dispersed about  the north pole according to the equilibrium 
distribution belonging to the field before its reversal, 

p(o ,O)=Cs inOe  ,-'~~176 C - l = 2 e s i n h e  -1 (9) 

The mean first-passage time at O, when averaged over this initial distribu- 
tion of  the starting `9, is 

r(O, `9) = r(O, 0) P(`9, 0) d`9 

= C f~ sin ,g e~-'~~ ~ d~ f~ {1 __ e_,_l(l_r o,)} dO' 
sin ,9' 

Actually this expression makes  no sense for 0 > O, but for small e those 
values of 0 do not contribute perceptibly. Integrat ing and using Ce = 
e x p ( - e - l )  gives 

f0 ~ . . . .  dO r ( O , O ) =  { l _ e - , - ' ( ~  s~}2 ( I0)  
sin ,9 

In the same way as before one may  show that  this cannot  be approximated  
by (2). 

The third comment  is that  both our results (6) and (10) diverge for 
O = re; since they are exact, this means that  it actually does take an infinite 
time to reach the south pole. [ T o  put  it differently: the endpoint  ,9 = 7r is 
a "natural  repulsive boundary"  of  the diffusion equat ion (4); see ref. 4, 
p. 313.] To  give a precise meaning to the concept of  "turning time" one 
therefore has to agree on a value for O at which one considers the turning 
completed,  for instance at O = r r -  ~. It seems more  natural  to average the 
endpoint  over  the ul t imate equilibrium distribution. With this definition 
one finally obtains for the turning time 

] fo e e_,_q]_cos s~} : d`9 r = C ~  e -e -  c~ { 1 -  
~o sin ,9 

d~ = { 1 _ e- . - t ( l+cos o,} { 1 _ e-~-'(1 . . . .  o)} 
sin 0 

(11) 



28 van Kampen 

5. THE C O M P U T A T I O N  OF THE DISTRIBUTION 

Although the first-passage time provides the answer to our question, 
it is also of interest to obtain a solution to the basic equation (4), again in 
the limit of small e. That means that the Brownian fluctuations are small 
and the rotation is mainly determined by (1), excepting the polar caps. 
Accordingly, it will be necessary to subdivide the interval (0, ~z) into a 
main center region and two end regions to be treated separately. (In the 
language of singular perturbation theory: one inner region and two outer 
regions.) 

The center region can be treated as if no fluctuations exist. Conse- 
quently one knows that, if at t~ the value of ,9 was 0~, its value at a later 
time t is given by the macroscopic equation (2). Hence 

P~( O, t l01,  t l ) = 6[ 0 - 2 arctan(e ' -"  tan �89 

The delta function may be expressed in terms of 0~ as a new variable, 
provided that the factor d01/dO is added, 

Pc(O, t l Ol, t l ) = J  Oi--2arctan e - ( ' - " ~ t a n ~ O  

x e -~ ' - "  ) c~ �89 0-------21 (12) 
cos 2 �89 

where the subscript c refers to the center region. 

6. STARTING AT THE NORTH POLE 

To cover the region near the north pole we rescale: 

0- -x /~  p 

O--t=Op 2 0p + p  P+~)(e)  (13) 

One easily verifies the solution 

p2 
Po(p, t) = e 2 t - ~  exp [ 2(e2,_ 1] (14) 

For t --* 0 it reduces to a delta peak on the north pole of our unit sphere 
and therefore refers to a bacterium that at t = 0 points precisely in the 
z-direction. This solution has to be attached to a solution in the center 
region obtained in the previous section. 
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For that purpose consider the general Chapman-Kolmogorov equation 
for the transition probability, 

P(,9, tl0, 0 )=fP( ,9 ,  t l ,9,, t]) d,9] P(,9, ,  t~ 10, 0) (15) 

Choose the intermediate time l I such that e" ,-~ e -~/4. It is then possible to 
substitute (14) for the latter factor and (12) for the former. The integration 
is trivial and the result is 

e - ( , - , , )  cos 2 �89 
P( ,9, t I O, O) - e( e2,, _ 1 ) cos z 1,9 - -  9̀] exp [ 2e(e2,, _ li] 

in which ,9~ now merely serves as an abbreviation for 
2 arctan(e - ( ' - ' ' )  tan �89 Evidently only values ,91 ~ e TM occur, so that one 
may put 

cos �89 = 1 `9~ = 2e - t ' -  ") tan ~,9, 

A l s o  e 2q , ~ e - 1 / 2  >) , 1, so that 

p(,9, t l 0 , 0  ) __e-2'2sin�89 [ 2 2 1 ] 
- e cos2�89 exp ---e-2 ' tane 2`9 (16) 

This is the distribution after the unstable polar cap has been left 
behind, i.e., for t > t ] .  The explicit mention of tl has disappeared from it, 
as it should. In addition it may be remarked that, as e2'> 1, no error is 
made on writing 

L 2sin�89 2tan2�89 
e ( O ' t t O ' O ) = e ( e 2  I) cos2 �89 e e--~' -- I j (17) 

In this form the result remains true for all t down to t = 0. For, if one 
inserts e2'~ 1, the distribution P is seen to be negligible outside a range 
`9--~x/~; and inside this range (17) coincides with (14), which had been 
derived for that region by a different expansion. 

7. INITIAL D I S T R I B U T I O N  A R O U N D  THE N O R T H  POLE 

In this section the solution of (4) is obtained when the initial distribu- 
tion is (9) rather than the unrealistic delta function at the pole. First it is 
necessary to find that solution of (13) that reduces at t = 0  to 6 ( p - p o ) .  
Such a solution can be found by considering the surface distribution 
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p(& ~O) on the unit sphere. We identify the polar cap with its tangent plane, 
introduce rectangular coordinates ~ = p cos ~, q = p sin ~, and consider the 
equation 

oi, O2p O2p o o 
at oC- + ~P-  U~ ,w Oq 2 O~ 

o2p + 1 oi, i o2p ol, 
=O; 2 p-~p4 p20~oa p-~p-2p (18) 

Take a solution p(p, t) that does not depend on q/; then the function 
P(p, t) =pp(p, t) obeys (13), The solution of (18) with initial delta peak at 
Po, ~00 is elementary: 

1 )exp I P'-2pPoe'C~ ( ' -r176176 
P = 2 ~ ( e 2 , _  1 5(-7~2, _~ I-) 

Integration over ~b gives the desired solution of (13), 

I 2 2 2t ;'+pae- 1 (ppoe') P,(p, t I Po, 0 ) -  P exp Io (19) e 2 ' -  1 2(e 2' - I) J \eXL~-- 1 ) 

where Io denotes the Bessel function with imaginary argument and the 
subscript n refers to the north polar cap. Incidentally, the normalization 
requires the identity 

f/ '  e-':&2Io(bx)x dx = 1 eb2/Za (20) 
a 

To find the evolution of the distribution once it enters the central 
region, use again (15), but this time with (19) for the latter factor, and 
perform the trivial integration. The result is 

P(O, tl~o,O) e -2 ' 2 s in �89  [ 2 1 
= e cos 3 �89 exp - e e-2,  tan 2 �89 

X e ~oe t an2  (21) 

This is valid for t > t]. No error is made on writing 

11)Zoos  3sin�89189 LI 2 tan  240] P(~9, t l 0o, 0 )=  8(e2,_ exp ~(eT l i /  
02 e=' {'2,9o e' tan_ ~0.'~ 

and in this form it remains valid all the way down to t = O. 



The Turning of Magnetotactic Bacteria 31 

It  is now possible to average (22) over  the initial distribution (9), 

fj P(,9, t) = C e : '  ~os Oo sin ,9o d,9o P(,9, t I ,9o, O) 

1 2sin�89 [ 2 t a n  2�89 
= e(2e 2' - 1 ) c~Ss 3 ~ exp [ ~ _ - ~ ) j  (23) 

This is the probabil i ty distribution of the ensemble of  bacteria that had 
reached equilibrium around the north pole before the field was reversed. 
The south polar  cap, however,  is not covered by (22) owing to the use of  
the approximat ion  (12), which diverges at the south pole. This restriction 
will now be overcome by at taching (22) to an expansion a round the south 
pole, ,9 = n. 

8. THE S O U T H  POLE 

To cover the region about  the south pole we set ,9 = z r -  x//'ep, 

Ot Op 2 Op 

In the same way as in Section 7 one may  construct  a solution with initial 
condition 6(p - Po): 

I P2-+P~e-~'] ( ppoe-"~ 
P exp Io (24) P s ( p ' t l P o ' O ) = l _ e - 2 ,  2 ( l _ e - 2 , ) J  \ l - e - 2 ' /  

As a prel iminary step we at tach this solution to a particular solution in the 
center region, namely (12), which is the solution that  starts at tl as a delta 
function at `91- Since ,9 traverses the center region in a time of order unity, 
we choose t2 such that  e '2- ' t  ~ e  -~/4 to make  sure that  at t2 the peak 
has reached the south polar  cap. Accordingly, we write the C h a p m a n -  
Kolmogorov  equat ion with intermediate time tz, 

P(,9, t l O~, t ,)= f P~(`9, t l O', t2) dO' Pr t21,9~, t~) 

= Ps(`9, t I `92, t2) (25) 

822/80/1-2-3 
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in which #2 = 2 arctan(e '~ -,2 tan �89 Setting #2 = n -  X//ep2, one has 

P2----~2 {~-- arctan ( e ' 2 - ' ' n  tan ~1 #t )}  

2 1 
= ~ arccot e'2- ,, tan ~ #1 

2 e -(t2-tl)cOt 1 

Hence we fred for (25) 

P(,9, tl#~,t~)= /ee-p~/2ex - e - ~ -  ~cot-~#~ 

x lo ( - ~  pe-Ct-"' cot ~ #1) 

This is how the distribution that started as a delta peak in the center region 
develops on arrival in the south polar cap. 

Our final task is to average ,91 over the distribution (23) of bacteria 
emerging from the the north polar cap. We use e2"~ 1, transform the 
integration variable 01 to tr = e -'~ tan 1# I , and find 

f P(#, t I#1, tl)P(OI, t~)d#l 

= 2e- 3/2pe-P2/2 f a da exp [ 2e-Z' la  2]Io( 2--~p e-t'~ 
e cr 2 e \x/~ cr J 

It is true that the precise value of tl has disappeared, but unfortunately 
I have not found a more elegant form of this result. 

A C K N O W L E D G M E N T  

I am indebted to H. de Waard for acquainting me with this subject 
and for patiently answering my questions. 



The Turning of Magnetotactic Bacteria 33 

REFERENCES 

1. R. P. Blakemore, Science 190:377 (1975). 
2. R. B. Frankel, Ann. Rev. Biophys. Bioeng. 13:85 (1984). 
3. I. Penninga, H. de Waard, B. M. Moskowitz, D. A. Bazylinski, and R. B. Frankel, J. Magn. 

Magn. Mat., to appear. 
4. N. G. van Kampen, Stochastic Processes #7 Physics and Chemistry, 2nd ed. (North- 

Holland, Amsterdam, 1992). 
5. N. G. van Kampen, in Instabilities and Nonequilibrium Structures, E. Terapegui and 

D. Villarroel eds. (Reidel, Dordrecht, 1987). 


